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Introduction
In this section, you will study a form of mathematical proof called mathematical
induction. It is important that you see clearly the logical need for it, so take a
closer look at the problem discussed in Example 5 in Section 9.2.

Judging from the pattern formed by these first five sums, it appears that the sum
of the first odd integers is

Although this particular formula is valid, it is important for you to see that
recognizing a pattern and then simply jumping to the conclusion that the pattern
must be true for all values of is not a logically valid method of proof. There are
many examples in which a pattern appears to be developing for small values of

and then at some point the pattern fails. One of the most famous cases of this
was the conjecture by the French mathematician Pierre de Fermat (1601–1665),
who speculated that all numbers of the form

are prime. For and 4, the conjecture is true.

The size of the next Fermat number is so great that it was
difficult for Fermat to determine whether it was prime or not. However, another
well-known mathematician, Leonhard Euler (1707–1783), later found the
factorization

which proved that is not prime and therefore Fermat’s conjecture was false.
Just because a rule, pattern, or formula seems to work for several values of

you cannot simply decide that it is valid for all values of without going
through a legitimate proof. Mathematical induction is one method of proof.

nn,

F5

 � 641�6,700,417�

F5 � 4,294,967,297

�F5 � 4,294,967,297�

F4 � 65,537

F3 � 257

F2 � 17

F1 � 5

F0 � 3

n � 0, 1, 2, 3,

Fn � 22n
� 1,     n � 0, 1, 2, .  .  .

n

n

Sn � 1 � 3 � 5 � 7 � 9 � .  .  . � �2n � 1� � n2.

n

 S5 � 1 � 3 � 5 � 7 � 9 � 52

 S4 � 1 � 3 � 5 � 7 � 42

 S3 � 1 � 3 � 5 � 32

 S2 � 1 � 3 � 22

 S1 � 1 � 12

What you should learn
• Use mathematical induction to

prove statements involving a
positive integer 

• Recognize patterns and write
the th term of a sequence.

• Find the sums of powers of
integers.

• Find finite differences of
sequences.

Why you should learn it
Finite differences can be used 
to determine what type of 
model can be used to represent 
a sequence. For instance, in
Exercise 61 on page 682, you 
will use finite differences to find
a model that represents the
number of individual income tax
returns filed in the United States
from 1998 to 2003.

n

n.

Mathematical Induction
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To apply the Principle of Mathematical Induction, you need to be able to
determine the statement for a given statement To determine 
substitute the quantity for in the statement 

A Preliminary Example

Find the statement for each given statement 

a.

b.

c.

d.

Solution

a. Replace by 

Simplify.

b.

c.

d.

Now try Exercise 1.

A well-known illustration used to explain why the Principle of Mathematical
Induction works is the unending line of dominoes shown in Figure 9.6. If the line
actually contains infinitely many dominoes, it is clear that you could not knock
the entire line down by knocking down only one domino at a time. However,
suppose it were true that each domino would knock down the next one as it fell.
Then you could knock them all down simply by pushing the first one and starting
a chain reaction. Mathematical induction works in the same way. If the truth of

implies the truth of and if is true, the chain reaction proceeds as
follows: implies implies implies and so on.P4,P3, P3P2, P2P1

P1Pk�1Pk

 3k�1 ≥ 2k � 3

Pk�1 : 3k�1 ≥ 2�k � 1� � 1

 k � 4 < 5�k2 � 2k � 1�

 Pk�1: �k � 1� � 3 < 5�k � 1�2

 � 1 � 5 � 9 � .  .  . � �4k � 3� � �4k � 1�
Pk�1 : Sk�1 � 1 � 5 � 9 � .  .  . � �4��k � 1� � 1� � 3� � �4�k � 1� � 3�

 �
�k � 1�2�k � 2�2

4
 

k � 1.kPk�1 : Sk�1 �
�k � 1�2�k � 1 � 1�2

4

Pk : 3k ≥ 2k � 1

Pk : k � 3 < 5k2

Pk : Sk � 1 � 5 � 9 � .  .  . � �4�k � 1� � 3� � �4k � 3�

Pk : Sk �
k2�k � 1�2

4

Pk.Pk�1

Pk.kk � 1
Pk�1,Pk.Pk�1

674 Chapter 9 Sequences, Series, and Probability

It is important to recognize that
in order to prove a statement 
by induction, both parts of the
Principle of Mathematical
Induction are necessary.

The Principle of Mathematical Induction
Let be a statement involving the positive integer If

1. is true, and

2. for every positive integer  the truth of implies the truth of 

then the statement must be true for all positive integers n.Pn

Pk�1Pkk,

P1

n.Pn

Example 1

FIGURE 9.6
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When using mathematical induction to prove a summation formula (such as
the one in Example 2), it is helpful to think of as 

where is the th term of the original sum.

Using Mathematical Induction

Use mathematical induction to prove the following formula.

Solution
Mathematical induction consists of two distinct parts. First, you must show that
the formula is true when 

1. When the formula is valid, because

The second part of mathematical induction has two steps. The first step is to
assume that the formula is valid for some integer The second step is to use this
assumption to prove that the formula is valid for the next integer,

2. Assuming that the formula

is true, you must show that the formula is true.

Group terms to form 

Replace by 

Combining the results of parts (1) and (2), you can conclude by mathematical
induction that the formula is valid for all positive integer values of 

Now try Exercise 5.

It occasionally happens that a statement involving natural numbers is not
true for the first positive integers but is true for all values of In these
instances, you use a slight variation of the Principle of Mathematical Induction
in which you verify rather than This variation is called the extended
principle of mathematical induction. To see the validity of this, note from Figure
9.6 that all but the first dominoes can be knocked down by knocking over
the th domino. This suggests that you can prove a statement to be true for

by showing that is true and that implies In Exercises 17–22 of
this section, you are asked to apply this extension of mathematical induction.

Pk�1.PkPkn ≥ k
Pnk

k � 1

P1.Pk

n ≥ k.k � 1

n.

 � �k � 1�2

k 2.Sk � k2 � 2k � 1

Sk. � Sk � �2k � 1�

 � �1 � 3 � 5 � 7 � .  .  . � �2k � 1�� � �2k � 2 � 1�

Sk�1 � 1 � 3 � 5 � 7 � .  .  . � �2k � 1� � �2�k � 1� � 1�

Sk�1 � �k � 1�2

 � k2

Sk � 1 � 3 � 5 � 7 � .  .  . � �2k � 1�

k � 1.
k.

S1 � 1 � 12.

n � 1,

n � 1.

 � n2

 Sn � 1 � 3 � 5 � 7 � .  .  . � �2n � 1�

�k � 1�ak�1

Sk�1 � Sk � ak�1

Sk�1

Section 9.4 Mathematical Induction 675

Your students may benefit from many
demonstrations of proof by induction.
Consider using proofs of the following.

 13 � .  .  . � �3 � 2n� � n�n � 4�
 Sn � 5 � 7 � 9 � 11 �

 12 � . . . � 3n �
3
2n�n � 1�

 Sn � 3 � 6 � 9 �

Example 2
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Using Mathematical Induction

Use mathematical induction to prove the formula

for all integers 

Solution
1. When the formula is valid, because

2. Assuming that

you must show that

To do this, write the following.

Substitute for 

By assumption

Combine fractions.

Factor.

Simplify.

implies 

Combining the results of parts (1) and (2), you can conclude by mathematical
induction that the formula is valid for all integers 

Now try Exercise 11.

When proving a formula using mathematical induction, the only statement
that you need to verify is As a check, however, it is a good idea to try
verifying some of the other statements. For instance, in Example 3, try verifying

and P3.P2

P1.

n ≥ 1.

Sk�1.Sk �
�k � 1��k � 2��2k � 3�

6

 �
�k � 1��2k2 � 7k � 6�

6

 �
�k � 1��k�2k � 1� � 6�k � 1��

6

 �
k�k � 1��2k � 1� � 6�k � 1�2

6

 �
k�k � 1��2k � 1�

6
� �k � 1�2

Sk. � �12 � 22 � 32 � 42 � .  .  . � k2� � �k � 1�2

 Sk�1 � Sk � ak�1

 �
�k � 1��k � 2��2k � 3�

6
 .

 Sk�1 �
�k � 1��k � 1 � 1��2�k � 1� � 1�

6

 �
k�k � 1��2k � 1�

6

ak � k2Sk � 12 � 22 � 32 � 42 � .  .  . � k2

S1 � 12 �
1�2��3�

6
 .

n � 1,

n ≥ 1.

�
n�n � 1��2n � 1�

6
 Sn � 12 � 22 � 32 � 42 � .  .  . � n2

676 Chapter 9 Sequences, Series, and Probability

Remember that when adding
rational expressions, you must
first find the least common
denominator (LCD). In 
Example 3, the LCD is 6.

Example 3
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Proving an Inequality by Mathematical Induction

Prove that for all positive integers 

Solution
1. For and the statement is true because

and

2. Assuming that

you need to show that For you have

By assumption

Because for all it follows that

or

Combining the results of parts (1) and (2), you can conclude by mathematical
induction that for all integers 

Now try Exercise 17.

Proving Factors by Mathematical Induction

Prove that 3 is a factor of for all positive integers 

Solution
1. For the statement is true because

So, 3 is a factor.

2. Assuming that 3 is a factor of you must show that 3 is a factor of
To do this, write the following.

Subtract and add 

Regroup terms.

Simplify.

Because 3 is a factor of and 3 is also a factor of it follows that 3 is
a factor of Combining the results of parts (1) and (2), you can
conclude by mathematical induction that 3 is a factor of for all positive
integers 

Now try Exercise 29.

Pattern Recognition
Although choosing a formula on the basis of a few observations does not
guarantee the validity of the formula, pattern recognition is important. Once you
have a pattern or formula that you think works, you can try using mathematical
induction to prove your formula.

n.
4n � 1

4k�1 � 1.
4k � 1,4k � 3

 � 4k � 3 � �4k � 1�

 � 4k�4 � 1� � �4k � 1�

4k. 4k�1 � 1 � 4k�1 � 4k � 4k � 1

4k�1 � 1.
4k � 1,

41 � 1 � 3.

n � 1,

n.4n � 1

n ≥ 1.n < 2n

k � 1 < 2k�1.2k�1 > 2k > k � 1

k > 1,2k � k � k > k � 1

2k�1 � 2�2k � > 2�k� � 2k.

n � k,k � 1 < 2k�1.

k < 2k

2 < 22.1 < 21

n � 2,n � 1

n.n < 2n

Section 9.4 Mathematical Induction 677

Example 4

Example 5

To check a result that you 
have proved by mathematical
induction, it helps to list the
statement for several values of 
For instance, in Example 4, you
could list

From this list, your intuition
confirms that the statement

is reasonable.n < 2n

6 < 26 � 64,5 < 25 � 32,

4 < 24 � 16,2 < 23 � 8,

2 < 22 � 4,1 < 21 � 2,

n.
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Finding a Formula for a Finite Sum

Find a formula for the finite sum and prove its validity.

Solution
Begin by writing out the first few sums.

From this sequence, it appears that the formula for the th sum is

To prove the validity of this hypothesis, use mathematical induction. Note that
you have already verified the formula for so you can begin by assuming
that the formula is valid for and trying to show that it is valid for

By assumption

So, by mathematical induction, you can conclude that the hypothesis is valid.

Now try Exercise 35.

�
k � 1

k � 2
�

�k � 1�2

�k � 1��k � 2�
�

k2 � 2k � 1

�k � 1��k � 2�
 �

k�k � 2� � 1

�k � 1��k � 2�

 �
k

k � 1
�

1

�k � 1��k � 2�

 Sk�1 � � 1

1 � 2
�

1

2 � 3
�

1

3 � 4
�

1

4 � 5
� .  .  . �

1

k�k � 1���
1

�k � 1��k � 2�

n � k � 1.
n � k

n � 1,

 Sk �
1

1 � 2
�

1

2 � 3
�

1

3 � 4
�

1

4 � 5
� .  .  . �

1

k�k � 1�
�

k

k � 1
.

k

S4 �
1

1 � 2
�

1

2 � 3
�

1

3 � 4
�

1

4 � 5
�

48

60
�

4

5
�

4

4 � 1

S3 �
1

1 � 2
�

1

2 � 3
�

1

3 � 4
�

9

12
�

3

4
�

3

3 � 1

S2 �
1

1 � 2
�

1

2 � 3
�

4

6
�

2

3
�

2

2 � 1

S1 �
1

1 � 2
�

1

2
�

1

1 � 1

1

1 � 2
�

1

2 � 3
�

1

3 � 4
�

1

4 � 5
� .  .  . �

1

n�n � 1�
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Finding a Formula for the nth Term of a Sequence
To find a formula for the th term of a sequence, consider these guidelines.

1. Calculate the first several terms of the sequence. It is often a good idea to
write the terms in both simplified and factored forms.

2. Try to find a recognizable pattern for the terms and write a formula for
the th term of the sequence. This is your hypothesis or conjecture. You
might try computing one or two more terms in the sequence to test your
hypothesis.

3. Use mathematical induction to prove your hypothesis.

n

n

Example 6
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Sums of Powers of Integers
The formula in Example 3 is one of a collection of useful summation formulas.
This and other formulas dealing with the sums of various powers of the first 
positive integers are as follows.

Finding a Sum of Powers of Integers

Find each sum.

a. b.

Solution
a. Using the formula for the sum of the cubes of the first positive integers, you

obtain

Formula 3

b.

Formula 1 and 2

Now try Exercise 47.

 � 60 � 120 � �60

 � 6�10� � 4�30�

 � 6�4�4 � 1�
2 � � 4�4�4 � 1��8 � 1�

6 �

 � 6	
4

i�1
i � 4	

4

i�1
i2

	
4

i�1
�6i � 4i2� � 	

4

i�1
6i � 	

4

i�1
4i2

� 784.�
49�64�

4
 �

72�7 � 1�2

4

 	
7

i�1

i3 � 13 � 23 � 33 � 43 � 53 � 63 � 73

n

	
4

i�1
�6i � 4i2�	

7

i�1

i3 � 13 � 23 � 33 � 43 � 53 � 63 � 73

n

Section 9.4 Mathematical Induction 679

Sums of Powers of Integers

1.

2.

3.

4.

5. 15 � 25 � 35 � 45 � .  .  . � n5 �
n2�n � 1�2�2n2 � 2n � 1�

12

14 � 24 � 34 � 44 � .  .  . � n4 �
n�n � 1��2n � 1��3n2 � 3n � 1�

30

13 � 23 � 33 � 43 � .  .  . � n3 �
n2�n � 1�2

4

12 � 22 � 32 � 42 � .  .  . � n2 �
n�n � 1��2n � 1�

6

1 � 2 � 3 � 4 � .  .  . � n �
n�n � 1�

2

Example 7
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Finite Differences
The first differences of a sequence are found by subtracting consecutive terms.
The second differences are found by subtracting consecutive first differences.
The first and second differences of the sequence are as
follows.

For this sequence, the second differences are all the same. When this happens,
the sequence has a perfect quadratic model. If the first differences are all the
same, the sequence has a linear model. That is, it is arithmetic.

Finding a Quadratic Model

Find the quadratic model for the sequence

Solution
You know from the second differences shown above that the model is quadratic
and has the form

By substituting 1, 2, and 3 for you can obtain a system of three linear equa-
tions in three variables.

Substitute 1 for 

Substitute 2 for 

Substitute 3 for 

You now have a system of three equations in and 

Using the techniques discussed in Chapter 7, you can find the solution to
be and So, the quadratic model is

Try checking the values of and 

Now try Exercise 57.

a3.a1, a2,

an �
1

2
n2 �

1

2
n � 2.

c � 2.b �
1
2,a �

1
2,

Equation 1

Equation 2

Equation 3



a �   b � c � 3

4a � 2b � c � 5

9a � 3b � c � 8

c.b,a,

n. a3 � a�3�2 � b�3� � c � 8

n. a2 � a�2�2 � b�2� � c � 5

n. a1 � a�1�2 � b�1� � c � 3

n,

an � an2 � bn � c.

3, 5, 8, 12, 17, 23, .  .  . .

3, 5, 8, 12, 17, 23, .  .  .

680 Chapter 9 Sequences, Series, and Probability

n: 1 2 3 4 5 6

3 5 8 12 17 23

First differences: 2 3 4 5 6

Second differences: 1 1 1 1

an:

Example 8Group Activity

A regular -sided polygon is a polygon
that has equal sides and equal
angles. For instance, an equilateral
triangle is a regular three-sided polygon.
Each angle of an equilateral triangle
measures and the sum of all three
angles is Similarly, the sum of the
four angles of a regular four-sided 
polygon (a square) is 

Number Sum
Polygon of Sides of Angles

Equilateral triangle 3

Square 4

Regular pentagon 5

Regular hexagon 6

a. The list above shows the sums of the
angles of four regular polygons. Use
these data to write a conjecture
about the sum of the angles of any
regular n-sided polygon.

b. Discuss how you could prove that
your formula is valid.

720�

540�

360�

180�

360�.

180�.
60�,

nn
n

For a linear model, the first
differences should be the same
nonzero number. For a quadratic
model, the second differences
are the same nonzero number.
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In Exercises 1–4, find for the given 

1. 2.

3. 4.

In Exercises 5–16, use mathematical induction to prove the
formula for every positive integer 

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

In Exercises 17–22, prove the inequality for the indicated
integer values of 

17. 18.

19.

20. and

21. and

22.

In Exercises 23–34, use mathematical induction to prove
the property for all positive integers 

23. 24.

25. If then

26. If then

27. Generalized Distributive Law:

28. and are complex conjugates for all

29. A factor of is 3.

30. A factor of is 3.

31. A factor of is 2.

32. A factor of is 3.

33. A factor of is 5.

34. A factor of is 5.

In Exercises 35– 40, find a formula for the sum of the first 
terms of the sequence.

35. 36.

37. 38.

39.

40.
1

�n � 1��n � 2�
, .  .  .

1

2 � 3
, 

1

3 � 4
, 

1

4 � 5
, 

1

5 � 6
, .  .  . ,

1

4
, 

1

12
, 

1

24
, 

1

40
, .  .  . , 

1

2n�n � 1�
, .  .  .

3, �9
2, 27

4 , �81
8 , .  .  .1, 9

10, 81
100, 729

1000, .  .  .

25, 22, 19, 16, .  .  .1, 5, 9, 13, .  .  .

n

�22n�1 � 32n�1�
�24n�2 � 1�
�22n�1 � 1�
�n4 � n � 4�
�n3 � n � 3�
�n3 � 3n2 � 2n�

n ≥ 1.
�a � bi�n�a � bi�n

x�y1 � y2 � . .  . � yn � � xy1 � xy2 � .  .  . � xyn

� .  .  . � ln xn .ln�x1x2
 .  .  . xn � � ln 

 
x1 � ln x2

x1 > 0,  x2 > 0, .  .  . , xn > 0,

�x1 x2 x3 
.  .  . xn ��1 � x1

�1x2
�1x3

�1 .  .  .  xn
�1.

x1 � 0,  x2 � 0, .  .  . , xn � 0,

�a

b�
n

�
an

bn
�ab�n � an bn

n.

n ≥ 32n2 > �n � 1�2,

a > 0n ≥ 1�1 � a�n ≥ na,

0 < x < yn ≥ 1�x

y�
n�1

< �x

y�
n

,

1
1

�
1
2

�
1
3

� .  .  . �
1
n

> n,     n ≥ 2

�4
3�n

> n,    n ≥ 7n! > 2n,     n ≥ 4

n.

	
n

i�1

 
1

�2i � 1��2i � 1�
�

n

2n � 1

	
n

i�1

i�i � 1� �
n�n � 1��n � 2�

3

	
n

i�1

i4 �
n�n � 1��2n � 1��3n2 � 3n � 1�

30

	
n

i�1

i5 �
n2�n � 1�2�2n2 � 2n � 1�

12

13 � 23 � 33 � 43 � .  .  . � n3 �
n2�n � 1�2

4

1 � 2 � 3 � 4 � .  .  . � n �
n�n � 1�

2

2�1 � 3 � 32 � 33 � .  .  . � 3n�1� � 3n � 1

1 � 2 � 22 � 23 � .  .  . � 2n�1 � 2n � 1

1 � 4 � 7 � 10 � .  .  . � �3n � 2� �
n

2
�3n � 1�

2 � 7 � 12 � 17 � .  .  . � �5n � 3� �
n

2
�5n � 1�

3 � 7 � 11 � 15 � .  .  . � �4n � 1� � n�2n � 1�
2 � 4 � 6 � 8 � .  .  . � 2n � n�n � 1�

n.

Pk �
k

3
�2k � 1�Pk �

k2�k � 1�2

4

Pk �
1

2�k � 2�Pk �
5

k�k � 1�

Pk.Pk�1

Exercises 9.4

VOCABULARY CHECK: Fill in the blanks.

1. The first step in proving a formula by ________ ________ is to show that the formula is true when 

2. The ________ differences of a sequence are found by subtracting consecutive terms.

3. A sequence is an ________ sequence if the first differences are all the same nonzero number.

4. If the ________ differences of a sequence are all the same nonzero number, then the sequence 
has a perfect quadratic model.

PREREQUISITE SKILLS REVIEW: Practice and review algebra skills needed for this section at www.Eduspace.com.

n � 1.
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In Exercises 41–50, find the sum using the formulas for the
sums of powers of integers.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, write the first six terms of the sequence
beginning with the given term. Then calculate the first and
second differences of the sequence. State whether the
sequence has a linear model, a quadratic model, or neither.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, find a quadratic model for the sequence
with the indicated terms.

57.

58.

59.

60.

Synthesis

62. Writing In your own words, explain what is meant by a
proof by mathematical induction.

True or False? In Exercises 63–66, determine whether the
statement is true or false. Justify your answer.

63. If the statement is true but the true statement does not
imply that the statement is true, then is not necessarily
true for all positive integers 

64. If the statement is true and implies then is
also true.

65. If the second differences of a sequence are all zero, then
the sequence is arithmetic.

66. A sequence with terms has second differences.

Skills Review

In Exercises 67–70, find the product.

67. 68.

69. 70.

In Exercises 71–74, (a) state the domain of the function,
(b) identify all intercepts, (c) find any vertical and horizontal
asymptotes, and (d) plot additional solution points as
needed to sketch the graph of the rational function.

71.

72.

73.

74. f �x� �
5 � x
1 � x

h�t� �
t � 7

t

g�x� �
x2

x2 � 4

f �x� �
x

x � 3

�2x � 4y�3�5 � 4x�3

�2x � y�2�2x2 � 1�2

n � 1n

P1Pk�1,PkPk

n.
PnP7

P6P1

a0 � 3,  a2 � 0,  a6 � 36

a0 � �3,  a2 � 1,  a4 � 9

a0 � 7,  a1 � 6,  a3 � 10

a0 � 3,  a1 � 3, a4 � 15

an � an�1 � nan � �an�1�2

a0 � 0a0 � 2

an � �2an�1an � an�1 � n

a2 � �3a1 � 3

an � an�1 � 2an � an�1 � 3

a1 � 2a1 � 0

	
10

j�1

�3 �
1
2 j �

1
2 j2�	

6

i�1

�6i � 8i3�

	
20

n�1

�n3 � n�	
6

n�1

�n2 � n�

	
8

n�1

n5	
5

n�1

n4

	
10

n�1

n3	
6

n�1

n2

	
30

n�1

n	
15

n�1

n
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61. Data Analysis: Tax Returns The table shows the
number (in millions) of individual tax returns filed in
the United States from 1998 to 2003. (Source:
Internal Revenue Service)

an

Model It

Year Number of returns,

1998 120.3

1999 122.5

2000 124.9

2001 127.1

2002 129.4

2003 130.3

an

Model It (cont inued)

(a) Find the first differences of the data shown in the
table.

(b) Use your results from part (a) to determine whether
a linear model can be used to approximate the data.
If so, find a model algebraically. Let represent the
year, with corresponding to 1998.

(c) Use the regression feature of a graphing utility to
find a linear model for the data. Compare this
model with the one from part (b).

(d) Use the models found in parts (b) and (c) to
estimate the number of individual tax returns filed
in 2008. How do these values compare?

n � 8
n
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